If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+73x+75=0
a = 10; b = 73; c = +75;
Δ = b2-4ac
Δ = 732-4·10·75
Δ = 2329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(73)-\sqrt{2329}}{2*10}=\frac{-73-\sqrt{2329}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(73)+\sqrt{2329}}{2*10}=\frac{-73+\sqrt{2329}}{20} $
| 9^5x=59049 | | 2x-3/10=1/2x+3/5 | | x=0.5x+22 | | 9x-6x-6x=6 | | 12/3k=15 | | x=1/2x+22 | | 3^x2=19683 | | 4/10x=10.4 | | 3.5(3.2-x)^2=4.10(x^2) | | x³+21x-14=0 | | (x-1)^2=2x^2-9x+11 | | 6/10x-1.5=8.9+0.2x | | 55=36x | | (x+2)÷5=12 | | 4t-(-12)-t=-25 | | -7(4x-4)+1=-28x+29 | | 3(x+6)-2=25-4x-9+7x | | y-y+100y-100y=0 | | Y=x^2-16x+65 | | 2(×+13+1=1-3(10-x) | | -4(r=2)=4(2-4r) | | (z+2)÷5=12 | | 60x^2+x+12=0 | | 2-6b=20 | | 4x^2-25x+36=-4x+9 | | -1/2x^2+8x-30=0 | | 5x+4=3(x+12) | | 0.95y=0.55y+40 | | F(x)=-1/2x^2+8x-30 | | 5|3x-4|-8=15 | | 0.3=x0.03 | | C=1.5(n+30) |